Category Archives: Time-resolved fluorescence

Time-resolved detection: Beauty and benefits

Time-resolved fluorescence spectroscopy experiments track the emission of fluorescence light from a sample. Time-resolved fluorescence intensities are also called fluorescence decays. Analysis thereof may resolve composite samples and report on dynamics (citations). Excited fluorescent molecules stay a particular time in their excited state before emitting light and delay the detection of fluorescence. This “delay” depends on molecular properties. Hence, time-resolved fluorescence informs on the studied molecules.

Continue reading

Fluorescence decays: Art and artifacts

One might think the analysis of a fluorescence decay is easy. In the end, it’s just standard curve analysis. However, the art is to precisely describe the fluorescence decay down to the shot-noise of the experiment. When doing so, a number experimental aspects have to be considered for the analysis: the instrumental response function, IRF, the differential non-linearity of the device, DNL, pile-up effects, etc.

Continue reading